Created by Ivan Lima on Mon, 05 Feb 2018 08:55:26 -0500
%matplotlib notebook
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
from cases import *
from datetime import datetime
print('Last updated on %s'%datetime.now().ctime())
case = 'tr3he.GIAF.01'
print(case,':',case_info[case])
Note: Output for the spin-up period was saved as annual means.
datadir = '/home/ivan/Data/Postproc/Tritium-3H'
store = pd.HDFStore(os.path.join(datadir,'%s_tseries_annual.h5'%case))
df_tseries = store['df']
store.close()
CTB = completely trapped bubbles, PTB = partially trapped bubbles, DGE = difusive gas exchange
fig, (ax1, ax2) = plt.subplots(ncols=2,figsize=(9.5,4))
helium = df_tseries.HELIUM3 * 1.e-6 # mol -> 10^6 mol
_ = helium.plot(ax=ax1,title=r'$^3\!$He inventory')
_ = ax1.set_ylabel(r'$10^6$ mol')
_ = df_tseries[['STF_HELIUM3','STF_HELIUM3_CTB','STF_HELIUM3_PTB',
'STF_HELIUM3_DGE']].plot(ax=ax2,title=r'$^3\!$He air-sea flux')
_ = ax2.hlines(0,df_tseries.index[0],df_tseries.index[-1],linestyles='dotted',linewidth=1)
_ = ax2.set_ylabel(r'mol d$^{-1}$')
Global mean fluxes (mol d$^{-1}$)
df_tseries[['STF_HELIUM3','STF_HELIUM3_CTB','STF_HELIUM3_PTB','STF_HELIUM3_DGE']].mean()
CTB = completely trapped bubbles, PTB = partially trapped bubbles, DGE = difusive gas exchange
fig, (ax1, ax2) = plt.subplots(ncols=2,figsize=(9.5,4))
helium = df_tseries[['INERT_HELIUM3']] * 1.e-6 # mol -> 10^6 mol
_ = helium.plot(ax=ax1,title=r'inert $^3\!$He inventory')
_ = ax1.set_ylabel(r'$10^6$ mol')
_ = df_tseries[['STF_INERT_HELIUM3','STF_INERT_HELIUM3_CTB','STF_INERT_HELIUM3_PTB',
'STF_INERT_HELIUM3_DGE']].plot(ax=ax2,title=r'inert $^3\!$He air-sea flux')
_ = ax2.hlines(0,df_tseries.index[0],df_tseries.index[-1],linestyles='dotted',linewidth=1)
_ = ax2.set_ylabel(r'mol d$^{-1}$')
Global mean fluxes (mol d$^{-1}$)
df_tseries[['STF_INERT_HELIUM3','STF_INERT_HELIUM3_CTB','STF_INERT_HELIUM3_PTB','STF_INERT_HELIUM3_DGE']].mean()
CTB = completely trapped bubbles, PTB = partially trapped bubbles, DGE = difusive gas exchange
fig, (ax1, ax2) = plt.subplots(ncols=2,figsize=(9.5,4))
helium4 = df_tseries.HELIUM4 * 1.e-12 # mol -> 10^12 mol
_ = helium4.plot(ax=ax1,title=r'$^4\!$He inventory')
_ = ax1.set_ylabel(r'$10^{12}$ mol')
_ = df_tseries[['STF_HELIUM4','STF_HELIUM4_CTB','STF_HELIUM4_PTB',
'STF_HELIUM4_DGE']].plot(ax=ax2,title=r'$^4\!$He air-sea flux')
_ = ax2.hlines(0,df_tseries.index[0],df_tseries.index[-1],linestyles='dotted',linewidth=1)
_ = ax2.set_ylabel(r'mol d$^{-1}$')
Global mean fluxes (mol d$^{-1}$)
df_tseries[['STF_HELIUM4','STF_HELIUM4_CTB','STF_HELIUM4_PTB','STF_HELIUM4_DGE']].mean()
CTB = completely trapped bubbles, PTB = partially trapped bubbles, DGE = difusive gas exchange
fig, (ax1, ax2) = plt.subplots(ncols=2,figsize=(9.5,4))
fig.subplots_adjust(wspace=0.25)
neon = df_tseries.NEON * 1.e-12 # mol -> 10^12 mol
_ = neon.plot(ax=ax1,title=r'Ne inventory')
_ = ax1.set_ylabel(r'$10^{12}$ mol')
_ = df_tseries[['STF_NEON','STF_NEON_CTB','STF_NEON_PTB','STF_NEON_DGE']].plot(ax=ax2,title=r'Ne air-sea flux')
_ = ax2.hlines(0,df_tseries.index[0],df_tseries.index[-1],linestyles='dotted',linewidth=1)
_ = ax2.set_ylabel(r'mol d$^{-1}$')
Global mean fluxes (mol d$^{-1}$)
df_tseries[['STF_NEON','STF_NEON_CTB','STF_NEON_PTB','STF_NEON_DGE']].mean()
CTB = completely trapped bubbles, PTB = partially trapped bubbles, DGE = difusive gas exchange
fig, (ax1, ax2) = plt.subplots(ncols=2,figsize=(9.5,4))
fig.subplots_adjust(wspace=0.25)
argon = df_tseries.ARGON * 1.e-15 # mol -> 10^15 mol
_ = argon.plot(ax=ax1,title=r'Ar inventory')
_ = ax1.set_ylabel(r'$10^{15}$ mol')
_ = df_tseries[['STF_ARGON','STF_ARGON_CTB','STF_ARGON_PTB','STF_ARGON_DGE']].plot(ax=ax2,title=r'Ne air-sea flux')
_ = ax2.hlines(0,df_tseries.index[0],df_tseries.index[-1],linestyles='dotted',linewidth=1)
_ = ax2.set_ylabel(r'mol d$^{-1}$')
Global mean fluxes (mol d$^{-1}$)
df_tseries[['STF_ARGON','STF_ARGON_CTB','STF_ARGON_PTB','STF_ARGON_DGE']].mean()